
J .  B E R G H U I S ,  I J B E R T H A  M. H A A N A P P E L  AND M. P O T T E R S  et al. 483 

culated by JB from Hartree wave functions 
without exchange, fits our curve from sin 0/A = 
0.5 onwards.) 

Finally, Fig. 3 gives a comparison between the scat- 
tering factor of Cu+, calculated by us from wave func- 
tions with exchange, and that  for Cu.calculated by 
Viervoll & 0grim without exchange. The discrepancies 
are appreciable throughout the Cu K range. Likewise, 
Viervoll & 0grim's values for Ca and Cr are consider- 
ably smaller than ours at low sin 0/~ values. I t  ap- 
pears, therefore, that  more calculations for moderately 
heavy elements are very desirable. 

We wish to thank the Directors of the Mathematical 
Centre, Amsterdam, for their very helpful cooperation 
and the Netherlands Organization for Pure Research 
(Z. W. 0.) for generous support. Our thanks are also 
due to Prof. D. R. Hartree for stimulating advice and 
for his interest in this work. 
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A General ized T r e a t m e n t  of Cold Work in Powder  Patterns*  
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Calculations of the effect of particle-size and cold-work distortion in the broadening of powder- 
pat tern  lines have been simplified in several previous treatments by considering the reflections as 
00l for orthorhombic axes. By a suitable transformation of variables and axes, it is possible to carry 
through the calculation for the general hkl reflection for a crystal of any system. The general result 
obtained is identical to tha t  previously obtained with the simplifying assumptions. The result is 
expressed in terms of particle-size and distortion Fourier coefficients which are obtained from the 
experimental peak shapes. 

1. Introduction 

To develop a Fourier treatment of the broadening of 
X-ray powder pattern lines by cold-work distortion, 
Stokes & Wilson (1942, 1949) and Warren & Averbach 
(1950) have assumed a transformation of axes such 
that  the reflection could be considered as 001 for 

* Research sponsored by the U.S. Atomic Energy Commission. 

orthorhombic axes. This simplifies considerably the 
mathematical treatment, but for the general hkl re- 
flection from crystals of low symmetry such a trans- 
formation is not possible. Nevertheless, the result ob- 
tained by this simplified treatment appears to be quite 
general, suggesting that  the transformation to ortho- 
rhombic axes is not really necessary. I t  is the purpose 
of this paper to give a generalized treatment for any 
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h k l  reflection and to show tha t  the previous results For  a. powder pattern,  the total  diffracted power in 
are indeed quite general, a reflection is given by the general relation 

2. G e n e r a l i z e d  t h e o r y  

We consider the hkl reflection from any crystal with 
axes ala,a3 and corresponding reciprocal axes b~b,ba. 
Owing to the distortion, the position of cell mlm,m3 
is given by 

R m = mla 1 +m~a~ + maa ~ +d(mlm~m~) . 

In  terms of unit  vectors s o and s for the directions 
of the pr imary and diffracted beams, the intensity 
from one crystal is given by 

I =  IeFZ'~' ~Y' exp [2-;i ( s - s ° ) "  (Rm-R'~')]  ~" 

Represent the diffraction vector in terms of contin- 
uous variables 

(S-So)/2 = h~b~ +h~b2 +h3b3 . 

The intensity is then given in terms of hlh,h 3 by 

I = I~F2~,~Y, 
m m "  

x exp [2zd{(m~-m~)h~ + (m~-m~)hs + (ma-m])ha} ] 

x exp [2~i {h~b~ +hsbs + hab3} 

• d 
Let 

! ! t 

~1 = ml- -ml ,  ns = ms--m2, n3 = ma--m3 , 

d(nan,nz)  = d(mlm,mz)-d(mlm m ), 
and let N(nlnsna) be the number of cells in the crystal 
with an ninon 3 neighbor. Using an average of the dis- 
tort ion terms for all pairs of cells with the same 
n~n,nz, the intensity reduces to the triple sum 

I = l e e  ~" 2 . Z 2  N(n~n~n3) 
n 1 n z n ~  

× <e p 

× exp [2gi(nzh 1+ n~h, + nah a)] . (1) 

We assume tha t  the intensity is spread out in reci- 
procM space about the point hkl through distances 
which' are small compared to ]H[ = ]hb~+kb,+lb~]. 
On this basis we can make the approximation 

(h~bl q- h~b, + haba), d (nlnsna) -+ H.  d (n~nsna) 

= [Hl~(n~n~na) , 

where e(nln~na) is the component of d(n~n~na) along H 
(normal to the plane hkl). Le t  h~ = h+p~, h~ = k+p~, 
h a = 1 + P3. Since we are interested only in small values 
of PlP~Pa, the sum in (1) can be replaced by integrals: 

+ 

x exp [2~i (n~p t + n~p,. + nzpa) ] dn~dn~dn a . (2) 

p = M j R ~ 2 3 f f l  I(PlP~PZ) dp~dp, dpa , (3) 
4% sin 0 

where I(plp~pa) is the intensity per crystM, M is the 
number of crystals, j is the multiplicity, R is the sample 
to receiver distance, and v~ is the volume of the unit  
cell. Since (a 1. a2 × a3) (bl. b9 × ba) = l ,  

dnl dn2dn3dpl dp, dpa = 

(a 1. a~ × aa) dnldnsdna (bl. b9 × ba) dpldp~dp z = dV~dVb.  

Let K = (I~F2jR923)/(4%sin 0). Combining (2) and 
(3), we have 

K I I  M(nlnzn3) <exp [27d[I-Ile(nlngn3)]> P 

×exp [2ui(nlpl+n2p~+napa)]dV~dVb,  (4) 

where M(nlnen3) is the number of nln2n 3 pairs summed 
over all the crystMs in the sample, and 

(exp [2:zi IHls(n~nzna)]> 

is now an average over all n~n~n z pairs in the sample. 
As seen from (4), the total  diffracted power in a 
reflection involves two volume integrals, one in crystal 
space and the other in reciprocal space. 

We aaow transform the axes and variables with a 
matr ix  for orthogonM transformations 

0¢11 0;12 0(13 :. 

0;ij ----- 0;21 0;22 0;23 

0;31 0¢32 0;33 

2 = 1 ,  Z ~ i i 0 ; i k = 0 ( j # k )  and the de- where ~Y 0;ii 
i i 

terminant  I0;ijl = 1. In  terms of the matr ix  0;q and 
the transposed matr ix 0;ii, we introduce the four new 
sets of quantities p~, n~, a~ and b~: 

t t 

Pi = ~ 0;ilP1 , Pi = ~,  0;giPi , 
J i 

t r 

n i = ~ 0;qnj , ni = .~Y 0;j~nj, 

t r 

a i = ~ 0;iiaj , ai = .~ 0;jia i , 
J J 

b~ --- .Z 0;~sbj, b~ -- .Z oq~bj. 
~ J 

(5) 

From the orthogonM nature of the matr ix  and the 
relations (5) it follows tha t  

nip1 + n , p ,  + =  ;pi + a-;v-; + - 4 p ; ,  

plbl  +P2bs-4-:P3b 3 = p;b;  +p~b~ A-p~b~, 
nlal+n2a,.+naa3 = n;a; + n~a~ + n~a~ , 

t ! t i t 

a l . a 2 × a a  = ax .a ,×a3 ,  b l . b ~ × b a  = bx .ba×b3 ,  
t t 

a i . b j  = dij , 
t t t t I t 

M(nlnzn3) = M(nxnz~va), s(nxnzna) = e(nlnznz) , 
d V ,  dVb = dnl dn;dn~dpl dp~dp~ . 
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In  terms of the new variables, 

 IfifIf ( ;n n ,< 
• ! t ! v v ., ! v ; v t ,, 

× exp [2az(nlPl+nzp2+%pa)] dn~dn2d%dp~dpidpa. (6) 

The orthogonal  conditions imposed on the  mat r ix  
leave it  with ' t h r ee  degrees of freedom. We now 
impose two addit ional  conditions• The vector  normal  
to the planes hkl was in t roduced as H -- hbl  + kb~ + lb a. 
We now require t ha t  

v v 

H.b2  = 0, H . b  3 = 0 .  (7) 

This au tomat ica l ly  makes a~ parallel to H, but  b~ is 
not  necessarily parallel  to H. 

Since H = (H .b l ) a~+(H.b~)a~+(H.b~)a~ ,  
we have 

la~l Ib~l cos (U, bl) = 1 .  (8) 

We now perform the  integrat ion with respect to 
! 

P2 and p~ over a range - w  to +w which is large 
enough to include everyth ing belonging to the re- 
flection hkl : 

l +~o . . . .  sin 2~n£w 
_ e x p  [27~$n2P2] dp2 gn~ ' 

t ¢ 

• ! t r t v t x exp [ 2 ~ n l p l ]  sin 2~n2w sin 2~naW dntdn2dn3dpl 
t ,, • 

~ n  2 7~n 3 
(9) 

v ! In  carrying out  the integrat ion over n2 and %, 

t 

f+°°sin 2~n2w 1 l+°°sin x 
7 dn~ = -  dx = 1,  

v-oo ~ 2  7~ ~-co X 

the  contr ibut ion is main ly  from the vicini ty of n~ = 0 
and we can set n~ = 0, n~ = 0 in the other te rms under  
the integral.  

exp [2~in;p;]dn;dp;.  (10) 

From the relat ion between the  vectors in reciprocal 
space which is i l lustrated by  Fig. 1, we have 

cos (H, b;)dlp;b;I = d((2 sin 0)/~).  

Combining with (8), we obtain  

dp~ = ]a~] cos Od(20)/,~.. 

The observed dis t r ibut ion of power in a powder pa t t e rn  
P2o is related to the  to ta l  power by  

P = 1 P2od(20) e 

Let M be the to ta l  number  of cells in the sample, and 
let K ' =  MK[a~I cos 0/;t. Expressing dp'~ in terms of 

d(20), and omit t ing the integrat ion with respect to 
d(20), gives the  observable dis tr ibut ion P20: 

P2o = K' I [M(n;OO)/M] (exp [27d]Hls(n~O0)]) 
• v ! ! 

x exp [2mnlp l ]dn l .  (11) 

From Fig. 1, cos (H, b~)]p~b~[ = (sin 0 - s i n  00)2/4 
where 0o is the Bragg-law angle corresponding to the  

\ 
\ 

\ \ 

o 
Fig. 1. Re la t ion  be tween the  vectors  in reciprocal space• 

The vector  b~. is perpendicular  to H b u t  no t  necessari ly in 
t the  plane of H and  b 1. 

center of the  hkl peak. Combining with (8), p~ = 
(sin 0 - s i n  00)2[a~f/;t. If L = n~Ia~l is the  distance be- 
tween a cell and its (n~00) neighbor (a distance normal  
to the hkl planes), s(n~O0) = AL, the  change in this 
length due to the distortion. 

Peo = K'  1 [M(n;OO)/M] <exp [2zilHt(AL)L]) 

× exp [2zinniaS] (sin 0 - s i n  Oo)2/Z]dn~. (12) 

For  convenience in the  final evaluat ion of the  
Fourier  coefficients, we introduce the a rb i t r a ry  quan- 
tities m and a such t h a t  L = n~]a~[ = ma. To com- 
pare mult iple orders of a set of planes, let 1 represent  
the order, so t ha t  IHt[ = 1/dl, where ]Ha[ = 1/d~. 
Final ly  we replace the integral  by  a sum and express 
P20 as a Fourier  series. 

P2o = K " . ~  APAD(1) exp [27dmx] , (13) 

where 
x --- (sin 0 - s i n  Oo)2a/)., 

Af = M(n~OO)/M, 

Af(/ )  --- (exp [2zil(AL)L/dl] } . 

Expressing the  shape of a powder-pa t te rn  reflection 
by  the  Fourier  series represented by (13), we obtain 
the products  of two coefficients, one relat ing to part icle 
size and the  other  to distortion• The result  expressed 
by  (13) is perfect ly general for any  hkl reflection, for 
any  crystal  system• I t  is identical  to the results 
previously obtained with the  simplifying assumption 
of a 001 reflection for or thorhombic  axes. 
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3. Evaluat ion  of the Fourier  coeff icients  

For the practical evaluation of the Fourier coefficients 
from (13), let Fig. 2 represent the experimental peak 

P2e 

% 
20 

Fig. 2. Relation between the experimental diffraction peak 
and the interval AOB within which it is expressed as a 
Fourier series. 

profile which we assume has been corrected for in- 
s trumental  broadening by the method of Stokes 
(1948). We select a Fourier interval AOB which is 
large enough to include the measurable tails of the 
peak. If OM is the value at B 

XM = (sin 0M--sin 0o)2a/2 = ½. 

This determines the value of the arbi t rary constant a. 
In  terms of this interval AOB, Fourier coefficients for 
each m have already been determined in connection 
with the Stokes's correction. Each m is multiplied by 
the value of a, and the coefficient designated by the 
true length L = ma. By having retained the arbi t rary 
constant a in (13), we are able to select a suitable 
interval to utilize efficiently the Lipson & Beevers 
strips for the evaluation of the Fourier coefficients. 

The particle-size coefficient A~ = M(n~OO)/M is 
best interpreted in terms of columns of cells parallel 
to H. If n~ is the number of columns of length D, 
we have 

oo oo 
A ~ = ~ (D-L)nl)/.~, DnD. 

D = L  0 

As shown by  Bertaut  (1949), for small L, APz = 
1 - L / ( D }  and 

(dAf/dL)z_+o = -1/<D> , 

giving directly the mean column length. The signifi- 
cance of the distortion coefficient A~z(l) has been 
illustrated in connection with measurements on cold- 
worked tungsten (McKeehan & Warren, 1953). 
Both the p~rticle-size coefficient A~ ~nd the dis- 

tortion coefficient A~(1) are equal to uni ty  for L=O. 
The distortion coefficient A~z(1) is equal to uni ty  for 
l = 0, so tha t  if measurements are available for three 
or more orders, an extrapolation of the measured 
products A~A~z(l) to 1 = 0 gives the value of Az P. 
For metals, where there is no appreciable peak shift 
as a result of cold work, A~(1)= <cos 2~l(AL)L/dl>, 
and for very small l, A~(I )  = exp [-2~212<(AL)~>/d~] 
regardless of the nature  of the strains, providing only 
tha t  they  remain finite. A plot of in A~A~z(1) versus 
l 9' is therefore linear at  small values of 1. Williamson 
& Smallman (1954) have pointed out tha t  if the strain 
distribution in the sample were a true Cauchy distri- 
bution, ln APzADz(1 ) would be linearly proportional 
to I. The apparent  contradiction arises from the fact 
tha t  the mean-square strain is infinite for a true 
Cauchy strain distribution. Since infinite mean-square 
strains are physically unrealistic, the safest extra- 
polation to 1 = 0 is given by  plotting ln A~A~(1) 
versus 12. The plot will not necessarily be linear in/2,  
but  it  becomes more nearly linear the smaller l, and 
this is the really important  condition for determining 
the intercept In A P. When only two orders are avail- 
able, the data  do not suffice to show the curvature 
in the In APzA~z(1 ) versus 12 plot, and the intercept 
In A~ is not uniquely determined. Three or more 
orders are highly desirable. For cubic powder pat terns 
third orders always coincide with another reflection, 
so tha t  the third order can be obtained only if there 
is a strong preferred orientation which can be utilized. 

Note added in proof.--It  has been brought to my  
attention tha t  par t  of this problem has been treated 
by Stokes & Wilson (1943). 
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